-
1 fourth
1. adjective1) viert...the fourth finger — der kleine Finger; see also academic.ru/23567/eighth">eighth 1.
2)2. noun(in sequence) vierte, der/die/das; (in rank) Vierte, der/die/das; (fraction) Viertel, das; see also eighth 2.* * *1) (one of four equal parts.) das Viertel2) (( also adjective) the last of four (people, things etc); the next after the third.) der/die/das Vierte* * *[fɔ:θ, AM fɔ:rθ]I. adj1. (in sequence) vierte(r, s)you're the \fourth person to put your name down du bist der Vierte, der sich einträgt\fourth form BRIT neunte Klasse, die Neunte2. (in a race)to be/come [or finish] \fourth [in a race] [bei einem Rennen] Vierter sein/werden; see also eighth I. 23.▶ the \fourth estate die PresseII. n1. (order)2. (date)3. (in titles)Edward the F\fourth spoken Edward der Vierte5. (gear position) vierter Gangnow put it into \fourth schalten Sie jetzt in den vierten Gang [o fam Vierten6. (in ballet) vierte [Tanz]positionIII. adv viertens* * *[fɔːɵ]1. adjvierte(r, s)2. n(= fraction) Viertel nt; (in series) Vierte(r, s)to drive in fourth (Aut) — im vierten Gang fahren
See:→ also sixth* * *A adj1. viert(er, e, es):in the fourth place viertens, an vierter Stelle2. viertelB s1. (der, die, das) Vierte:the fourth of May der 4. Mai2. Viertel n3. MUS Quart(e) f* * *1. adjective1) viert...the fourth finger — der kleine Finger; see also eighth 1.
2)2. noun(in sequence) vierte, der/die/das; (in rank) Vierte, der/die/das; (fraction) Viertel, das; see also eighth 2.* * *adj.viert adj.vierte adj.vierter adj.viertes adj.
См. также в других словарях:
Equal Marguerite : "Etre parent et travailler" — Equal Marguerite Equal Marguerite (Être parent et travailler) est un programme européen qui signifie : Mutualiser et Associer nos Ressources pour Gérer de façon Utile à l’Emploi un Réseau d’Initiatives pour des Temps Equilibrés. Sommaire 1… … Wikipédia en Français
Equal Marguerite — (Être parent et travailler) est un programme européen qui signifie : Mutualiser et Associer nos Ressources pour Gérer de façon Utile à l’Emploi un Réseau d’Initiatives pour des Temps Equilibrés. Sommaire 1 Un programme Européen Equal 2 Agir… … Wikipédia en Français
Dimension (vector space) — In mathematics, the dimension of a vector space V is the cardinality (i.e. the number of vectors) of a basis of V. It is sometimes called Hamel dimension or algebraic dimension to distinguish it from other types of dimension. This description… … Wikipedia
Dimension function — In mathematics, the notion of an (exact) dimension function (also known as a gauge function) is a tool in the study of fractals and other subsets of metric spaces. Dimension functions are a generalisation of the simple diameter to the dimension… … Wikipedia
Dimension theorem for vector spaces — In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite, or given by an infinite cardinal number, and defines the dimension of the space.… … Wikipedia
Minkowski-Bouligand dimension — In fractal geometry, the Minkowski Bouligand dimension, also known as Minkowski dimension or box counting dimension, is a way of determining the fractal dimension of a set S in a Euclidean space R^n, or more generally in a metric space ( X , d ) … Wikipedia
Minkowski–Bouligand dimension — Estimating the box counting dimension of the coast of Great Britain In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box counting dimension, is a way of determining the fractal dimension of a set S in a … Wikipedia
Global dimension — In ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring A denoted gl dim A , is a non negative integer or infinity which is a homological invariant of… … Wikipedia
Fractal dimension — In fractal geometry, the fractal dimension, D , is a statistical quantity that gives an indication of how completely a fractal appears to fill space, as one zooms down to finer and finer scales. There are many specific definitions of fractal… … Wikipedia
Inductive dimension — In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n… … Wikipedia
Cohomological dimension — In abstract algebra, cohomological dimension is an invariant which measures the homological complexity of representations of a group. It has important applications in geometric group theory, topology, and algebraic number theory. Contents 1… … Wikipedia